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A system of equations defining the motion of polarizable multiphase (disperse) 
media in an electromagnetic field is derived in approximation of electrohydro- 
dynamics, using ideas of thermodynamics and hydrodynamics of polarizable 

media expounded in [l-4]. 

The system consists of equations of motion and energy for the mixture as a whole, 

of “diffusion” relationships that replace the equations of motion and energy for each 

phase, of equations of continuity and state, and of Maxwell equations. The medium 

is assumed to consist of k phases which can be taken as incompressible and ofN - k 

compressible phases, with each phase obeying its own polarization law and having its 
own temperature. 

A formula is obtained for the force exerted by the electromagnetic field on the 

medium. The part of that force related to the process nonequilibrium contains deriva- 

tives of mean velocity, pressure differences, chemical potentials, and temperature of 

the various phases. The pressure of medium whose carrier phase, unlike the mixture 

of compressible phases [Z], is incompressible, is not determined by thermodynamics 
of the medium but has to be derived from the solution of the problem. 

Equations are derived for the variation of volume concentration of compressible 
phases, which relate variation of the true density of these phases to differences of pres- 
sures, chemical potentials, and to velocity gradients. The possibility of specifying in- 

ternal energy as a function of dependent and independent parameters, and the equival- 
ence of equations obtained in both cases is indicated. Equations for a polarizable in- 

compressible homogeneous medium or a mixture of several incompressible phases are 
a particular result of the present investigation. 

Equations of motions are derived for polarizable and magnetizable multicomponent 
media. The equations of diffusion in multicomponent media in a magnetic field when 
each component is magnetized according to its particular law are considered in detail. 

The presence in disperse systems of phases that can be considered incompressible 
considerably complicates the description of such systems. This is due to that the in- 

troduction of parameters such as pressure, chemical potentials, entropy of phases, and 
of concepts such as density of energy and energy flux, etc. is determined by the system 
thermodynamics. The successive use of such method for defining the motion of a multi- 

phase magnetizable medium in approximation of ferrohydrodynamics appeared in [Z] 
in the case when all phases are compressible. The method used in [2] is inapplicable 
when part of the phases can be assumed incompressible. The presence of incompress- 
ible phases necessitates the introduction of new parameters unrelated to thermodynamics, 
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and the redefinition of the previously used parameters of the system such as pressure, 
etc. Hence the formulas for forces acting on the medium, the work of these forces, 
diffusion relationships, and other formulas and equations that define the multicompon- 
ent media which contain incompressible phase, differ considerably from those derived 
in i2-j. 

1. n@rfVatiorl Of t4uationr for determining the 

motion Of magnetteable disperse media. Letusconsider 
the motion in an electric field of a disperse polarizable medium consisting of N 
phases: the carrier gas or liquid in which are dispersed N - 1 kinds of charged phas- 
es (drops, bubbles, solid particles, etc. ). Each of the phases may generally polarize 
according to its particular law. 

We assume that the phases posess some conductivities, and that the medium cont- 
ains two kinds of charged particles: free positive ions and negative ions or electrons. 
We assume that in addition to these free charged particles there are elementary charg- 
es stuck to dispersed particles and not moving relative to the latter (dispersed particl- 
es are charged). We further assume that in the considered medium k phasea can be 
considered incompr~ible and the rema~ng ilf - k phases compressible. We denote 
by numbers 1, 2, . . ., k (k + 1, k + 2, . . ., N) the parameters related to in- 
compressible (compressible) phases, and by numbers N + 1.) N + 2 the para- 
meters related to free ions charged positively and negatively, respectively. 

We assume that phase a occupies in a unit volume the volume I?, (I’, + I’s 
4 . * . f r~ = 1) and that its density is Pa0 (the true density of a phase), We 
introduce the temperature $?a , unit mass entropy s, , mean velocity v, *and 
the blurred density pa = r;ZpcGo of each phase, and assume that ions and electrons 
occupy the whole volume, i.e. r’~+~ = rrv+s = 1. 

We denote by Qa the volume charge of phase a and of the free positively and 
negatively charged particles, and by j, = qava the electric current density of the 

a -phase or of the free charges. When speaking of some parameter with subscript 
CC or of equations containing parameters with the a -subscript I we understand,un- 

less otherwise stated, that the respective parameter or equation are determined for a 
varying from 1 to N + 2. The quantities pa0 = Const when a = 1, 2, . . 

-, k. The quantity qrl = 0; and subscript r\ denotes here and subsequently paramet- 
ers related to the dispersing (carrier) phase. 

We define the mean density P, the mixture velocity U, the charge density Q , 
and the total current j by formulas 

P = XPa, Pu==IZP~~~~ 9:=ZqGLY j =Xja (1.1) 

Here and in what follows 2 and z,,b denote, UnleSS otherwise stated. summations 
carried out, respectively. from 1 to N + 2 , and from 1 to N -!- 2 except for 
a = p* 

We &au con&Ier the motion of the medium in approximation of electrohydro- 
dynamics [3,5,6] in which the vectors of electric field and of electrical induction do 
not undergo transformation when passing from one inertial system to another. In the 
considered approximcltion Maxwell equations are of the form 
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rot E = 0, ah D = 4nq (1.2) 

rot H = +j+$$-, divB = 0 

We assume that the internal energy U of the medium unit mass is a function of 
entropy of each phase and of free charged particles taken per unit mass of the mixture 

cc& (cc = 1, 2, . . ., N + 2), of the mixture density p, of the concentration 

of phases and free charged particles c, = pal p (a = 1, 2, . . . , N + 2), volume 
concentration of phases I’, (cz = 1, 2, . . ., IV), and of the absolute magnitude 

of the electrical unduction vector D , i. e. 

U = U (Casa, P, Cay ra, 0) (1.3) 

where the kinetic energy of the carrier phase associated with the pulsation ofdispersed 
phases is disregarded, and the dependence of the system internal energy on the inter- 

face size of phases is not taken into consideration for the sake of brevity. 
Variation of internal energy is defined by 

dU = C Tadcasa -i_ $dp + 

C,-,,dc,y+-x$-dJ.'a += 

(1.4) 

where and in what follows summation is carried out with respect to Latin subscripts from 

one to three. It is assumed that everywhere partial derivatives of any function f of 

several specified parameters are determined one by one, while the remaining ones are 
assumed constant, for instance, 

The last of equalities (1.4) implies that vectors of electric field and electrical 

induction are parallel: D = eE, e = (8npdU / cYD*)-~. The medium permit- 
tivity is generally a function of parameters CaSa, p, Ca, I?,, and D that determine 

the internal energy. 
The equations of continuity for the density of phases and components, mixture den- 

sity p, concentrations c, , and for each phase charge Qo are of the form 

$+divpu=O, p% = x,P-divJa, J, =pa(va-u) (1.5) 

!$+divja=x2 (a=l, 2 ,..., N, a#q), q,=O 

QN+1 (N+a) = 
‘N+I (N+a) eN+~ (Nta)PN+l (N+s) 

mN+~ (N+a) 
9 

c 
x,” = 0 
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where z,V+l(N+z) 
free charges 

and mlv+l(~+s) are the multiplicity and mass of positive (negative) 
eiv+l = e and eN+a = -e, respectively, e is the proton charge, 

and xJ’ and sioq are the rates of creation of the mass and charge of the cc -phase 
or component. 

From the first and second of Eqs. (1.5) we obtain tbr the r, incompressible phas- 
es the equation 

dr,/dti-r,divu=(X,p-divJ,)/p,‘, a-l,...,k (1.6) 

Neglecting the field momentum and (for simplicity) the force of gravity, we can 
write the equation of momentum for the medium and field in the form 

dpzL, i dt = -d (PUiUk - pih.) I d~k (1.7) 

We introduce the mixture pressure p and express the stress tensor pik in the form 

pit = -Phi& + Tip (1.3) 
and pressure p in the form 

P I- pr + pinC ( 1.9) 

where pine is the part of mixture pressure that is unrelated to the thermodynamic 
parameters of compressible phases. The reason for introducing the term JI*“~ is to 
allow for the pressure of incompressible phases, not accounted for in thermodynamic 

functions. when all phases are compressible there is no need to introduce pressure 

P 
inc in the medium governing paiameters. Thus case was considered in (21. 

Using the Gibbs identity (1.4) and Eqs. (1.5) and (I. 7) --_(I. 9) we obtain 

(1.10) 

The term d (qk - ZL,ni,) / 8xk has been added and subtracted from the right-hand 

side of formula (I. 10). The physical meaning and expression for vector q and tensor 

&k appear below, 
As in [Z], we made three assumptions that define the model. 

1’ . The total energy of the medium and field, and the flow of energy to the med- 

ium and field are, respectively, 

pT+@J, PU~~+U+$)i-~[EH]+q-_i~ik3k (1.11) 

where 3k are unit vectors of the basis. The equation of energy of the medium and 

field is of the form 
a (1.12) 

arP2 ( 
u”+,r/) = - div [ pu (-$- Jr U + $) + 



Construction of mode-Is of media 

2” . The equation of variation of the medium entropy is of the form 

c dcasa 
PTayji- - pi)‘? div u j- div q + 

c 
& (x,p - div Ja) - 

G-w)E- kpa ‘2 - - IIi,kVkUi _= 0 
a=1 

It follows from Eqs. (1. lo), (1.12), and (1.13) that 

3”. The dissipation function CT is of the form 

(3z ?’ c ~d!$i(T, _ T,)+ c “{‘a -k 

a+rl 
rl 

a#q II 

N 

c Pa da (Ii/ Pa) (pa* 

a::ktl 
T, - ~11”) -it C Ja5, - q > t 

a+v 11 

a#rl 
!V 

{hi-C ra(pa* - p,,*)6i,i}y 
a=[ 
am 

T;a*=L, Pa*zcPa (Ct~zk+l,...,N+ 2) 

$I* = Ea + pi”C (pa” i r,) -l 
Y-l 

1, = k?,” - L* + ~a (Tq - Ta) + (pa* - pq”) 2 
(U#N$l, 1+2, 7) 

1, = E,* - L*.+sa(Tq-Ta)(a=N+l, N+2) 

-+ s,v Tq -- Ta 

TV 
pa*--P + 

v Tq 
(a#$ N-t-1, Nf2) 

rl 

ca = V “* ; ‘,* + $- + s,V T’I;Ta (a = N + 1, N -+ 2) 
9 a rl 
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(1.13) 

(1.14) 

(1.15) 

Formula (1.15) for the dissipation function substantiaIIy differs from the correapond- 
ing formula (1.20) in [Z]. This is due, first, to that a polarizable medium is consid- 
ered here, not a magnetizable one as in [Z], and, second, to the introduction of pres- 
sure pinC in the determining parameters of the system. 
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Defining the mixture entropy s by formula S = ZcUscc and taking into account 
the expression for u in (1.15) and the definition j - qu = ztqaJa / pa we obtain 
from Eqs. (1.13) and (1.15) for the mixture entropy variation an eqUatiOn of the form 

Applying the Curie theorem and the Onsager rule we obtain 

Ja = v.qLa, VL + La, N+SVTV 

q 
-T,:= c LNts, vfiv + LNt8, N~sVT, 

Y#tl 

‘asa -&- Padi = C (Pa. v (Tq - TV) + C Ta, N+s+vlv -k 
V#rl vzq 

N 

x Cpa, PN+O+V (Pv* - Pn*) -!- ‘prjaviUj, a # rl 
v-Jr+1 
%-I 

P 
*a -= 
TQ 

~Ntsta, v Vi, - TV)+ &P Ntauc, Nt& + 
v+rl v+rl 

N 

z (PNtg+cc,BNtltv@v*-prl*)f(p~+CCVIUj, a#: 
v=4+1 
v+n . . 

Pa ‘a Wa / Pa) 
T, at = %Ntrtu, v %I- Tv) + 

V#crl 
N 

c 
’ (paNt&.a, N-k%& + %Nt&ta, %Ntbtv (pv* - pq*) + 

vrsn _ . 

Cp~~HWViUi, a=k+1, k+2 ,..., N, CL#~ 

T;;‘{n,,-~ra(Pa*-PPn*)~*~}=~YI(T,-Tv)+ 
a4 V#rl 
a#n 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

N 

c Y~tz+vlq + C Y$p (pq* - pq*) + LikjlVjU E 

V#rl v=k+l 
Vfrl 

Equations (1.17) and (1.20) are valid for cc # q, but, since ZX$ = 0 and 

ZJa = 0, it is possible to write the expression for Jq and X$ in a form similar 

to that in [a], and assume that these equations are also valid for CC = q. 

When the electric field [in&en&y] is fairly low and the medium can be considered 

isotropic. the coefficients in Eqs. (1.17)-( 1.22) are assumed independent of the elec- 

tric field and to satisfy the usual Onsager reciprocity relationships for an isotropic med- 
ium 
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L = &,a, 
(qLi,2 

La, Ni.8 = LN+8, a 

,...,N-i-2; a+#rt); CPa,Y=%*a 

cpfjacC -911” (a, y = 1, 2, * * 0, 3N + 4; a, y# rl), N3_2frl, 

2N + 5. . ., 2N + 4 + k, 2 N $ 4 Jr q); Liikl = hctij 

(I.. 23) 

Equations (1.17) are used for the detestation of vectors of diffusion, and (1.19) 
for determining temperatures (or entropies) or phases and components, replacing the 
unwieldy equations of energy for each phase and component, The kinetic equations 
(1.17) can be written in the form of Ohm’s laws for the motion of phase and component 
charges, as was done in [a]. 

For a = k + 1, . . ., N, a # q Eqs, (1.21) make it possible to determine 
the rate of volume concentration variation of compressible phases, without having to 
resort to equations of the kayleigh type for bubble pulsations, which on the assumptions 
made here does not follow from the applied formaltzm of thermodynamics of incom- 
pressible processes. 

Denoting by U, the internal energy of the medium in the case of absence of a 
field, from the last of formulas (1.4) we obtain 

D 

U=U,+++dD 
0 

(1.24) 

Taking into account formulas (1. S)* (1.14), (1.24), and (1.4) for the stress tensor 
and force, the chemical potential $6 , and pressure pa we obtain expressions of 
the form 

pik = - 
Wk 

PC f Pin0 + g) 6ik $- 7 + aikc 
%k 

fi = 7 
(1.25) 

k 
D 

when the internal energy U is specified as a function of true densities pa” and 
volume concentrations I’, (not p, ca, I?,) and of parameters Ca Sa, and D , the 
formulas for pc, pa and && in (1.25) assume the form 

DdD 
(1.26) 
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In the case, when in a two-phase uncharged medium (qa = 0, a = 1, 2) it 
is possible to disregard cross effects and the phase temperatures are the same, the 
equation for diffusion is of the form 

If both phases are compressible (k = O), formula (1.27) with allowance for 
expressions for Ea* and pa* in (1.15) and (1.25), respectively, (with q=2 
for definites) assumes the form 

L;,‘lJ1 = V ‘Os; 5o1 + V 5 ($ _ 2) /I;:&, + 
(1.28) 

2 1 2 1 
0 

-i+ v PO1 - po8 TZ -t+v&-(&-g)g 
1 2 

0 

At small concentrations of the dispersed phase the mixture permittivity E is defin- 
ed in terms of permittivities of phases by formula 

E=&z+rl 
3 (El - e,) E2 

El + %z 
(1.29) 

where es and E1 are the per~t~viti~ of the carrier and dispersed phases, respectiv- 

ely. 
Let us consider the diffusion of gas bubbles in a compressible liquid whose permit- 

tivities are defined by formulas 

(Es - 1) / (es -i_ 2) =x a2p2o, 81 = 1 I- a,p, (1.30) 

Equation (1.28) with allowance for the equalities (I, 29) and (1.30) assumes the form 

31’1 (?I2 - 2P,E, - 2&& 
X 

We assume that the internal energy of the disperse medium and of the field per 
unit of medium mass U is specified, i.e. that functions U, and e (ctP%, PI cc%* 

ra, D) are known. It is then possible to formulate a closed system of equations for 

defining the motion of the disperse mixture in the electric field when each phase and 
component are polarized according to their particular laws. In the approximation of 

elec~ohydrodynamics the system of equations consists of eon~nuity equations (L.5), 
equations of state (1.4), the equation of motion of the mixture (1.7) with allowance 
for formula (1.8) for p j f , Eqs. (1. S), (1. X4), and (1.22), of the equation of energy 

for the mixture (1.12 ), kinetic equations (I.. 1’7) - (1.21), and Maxwell equations 

(1.2). 
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Note that pressure pi”’ for q > k, i.e. when the carrier phase is compressi- 

ble, does not appear in the derived system of equations, and there is no need to form- 

ulate for it any additional relations. However, when 1 < rl < k pressure pinC 
is represented in the system of equations, its determination requires in addition to all 
equations the equality ri + rs + . . . + l?~ = 1. 

To determine the adsorption charge of each phase qa (a = 1, . . ., N, a # 11) 
it is necessary to make additional assumptions about the rate of charge variation q*. 

In constructing the model it was assumed above that the internal energy U is a 
function of variables among which ccc, ICC (a = 1,. . ., N) and p are dependent.[l]. 

This approach makes possible to write all formulas in a convenient symmetric form. 

It is possible to write an equc;tion in which the internal energy U is a function of only 
independent variably, and to show that the equations obtained with the use of function 

0 are exactly the same as those in whose derivation the internal energy U was used 

[4]. To pass from function U to function U it is necessary to use formulas that link 
the parameters on which depends the internal energy, so as to eliminate a part of 

parameters from the expression for the internal energy L’ [4]. 
In actual application of the derived above equations one has to bear in mind that 

the form of equations substantially depends on the selection of parameters that define 
the internal energy. when the internal energy is defined in terms Of Only a part Of para- 

meters, or of some combination of these (e. g., sa, pa’, rCG, and D I p or scG, n, ccc, 

1’,, and Dlp , etc. ), the use of equations derived here requires that the internal 

energy be specified as a function of parameters ccIpcL, p, ca, Ia, and D used here, 
and apply this transformed function in all formulas. 

2. Equations of motion of polsrfzable multicorn= 
p o n e n t m e d i a. Let us consider in the approximation of electrohydrodynamics 

[3,5,6] the motion of a mixture consisting of N components filling one and the same 
volume, each of which polarizes in the electric field E according to its particular 

law. 

We denote by pa, vat Tar s,, and qa , respectively, the density velocity vec- 

tor, temperature, entropy per unit mass of each component, and the volume charge 
density of the a component; the electric current density of the a component will be 
denoted by j, . We determine the mixture mean density p , its mean velocity 
u, total charge, and current by formulas (1.1). 

We assume that the internal energy U per unit mass of medium and field is a 

function of c,.s,, p, c, and D . On the assumptions made above in Sect. 1 about 
the density of energy and energy flux, and the dissipation function, it is possible to 

derive equations for defining the motion of the considered medium. 
The equations of continuity are the same as the corresponding equations (1.5). 

and the equation of motion is analogous to Eq. (1. ‘7) in which the stress tensor pik 
is of the form of the first of formulas (1.25) in which 
is substituted for pc + pinC . 

p r= p2 (NJ I ap)easa,Ca,D 

The equation of energy becomes the same as Eq. (1.12) if in the latter we set 

P = P2 (au / 3P), and the form of the dissipation functions becomes the same 
as the form of the dissipation function (1.15), after elimination from the latter of 
terms proportional to pa* - pn* and the substitution of (au / &&,s,,, ,,, cv (vi-a), 
D for &* . 
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The kinetic equations which correspond to this dissipation function are generally 
different from kinetic equations that define a multiphase medium. The final system 
of equations defining the motion of multicomponent medium is of the form 

?$ + div pccu - xa -- div Ja, 

N 

Ja = pa (va - u), c xc& z=z 0 
a=1 

-&Li = - WQr - Pit;) 

Pik = 
EiDk 

- p&k -!- flik + -&-- 

-& (p g + pU) = - $ {put ($ + U + $) -t- * IEHI, + 

- Tp2q = 2 L N+l, v gv + LN+I, NH--P 
V=i 

vi+ 

;v=v5E+-(~-~~++svv 7RGTv , v#P 

(thecorrespondingsystem of equations for && = 0 can be found in [3] ). 

The oxfficients in the last five of the above kinetic equations (pa,,,, qija, yijv, 

I&V, and Lijkr satisfy the usual Onsager reciprocity relationships. 
It should be &eased that in the case of a polarizable multicomponent medium the 

stress tensor pik depends on polarization of the medium not only in terms of pressure 

p and tensor E& / (4n) - EDaik / (4~~1) but, also, in terms of the chemical 

potential difference contained in tensor flik. 

3. Equation: defining the motion of magnetiz- 
able multipha:e and multfcomponont media. Derivation 
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of these equations is similar to that in Sects. 1 and 2. The equations of conservation 
of mass, momentum, energy, and the equations of state and the kinematic equations 
for a magnetizable multiphase and multicomponent medium in the approximation of 
ferrohydrodynamics are the same as the equations for a polar&able multiphase and 
multicomponent medium in approximation of electrohydrodynamics after the substitu- 
tion in the latter of H for E , B. for D , p for E , j for j’, and E’ = E + 
c-l fuBj for E (note th t ‘t a I. is not necessary to carry out the subs~tion in the ex- 
pression c [EHI / (4~) for pointing’s vector, the substitution E’ for E is only 
made in the expression for Q, (1.15). In the case of magnetizable media the coeff- 
icients in kinetic equations are related by corresponding Onsager reciprocity relation-, 
ships in a magnetic field [Z]. Maxwell equations in approximation of ferrohydrodyna- 
mics appear in p]. 

Let us consider diffusion in two-~ompon~t magnetizable medium. In many inst- 
ances it is possible to define the magnetic susceptibility of a two-component mixture 
by formula 

X = x1+ Xa (3.1) 
where x1 and xa are the magnetic susceptibilities of the first and second compon- 
ent, respectively. 

Formula (3.1) is obtained on the assumption of additivity of mixture magnetization 

M = MI $ M,, M, = x&f, a = 1, 2 (3.2) 

Let us compare the formulas obtained here for diffusion in a multicomponent mix- 
ture with those in [7], As in [73, we assume that the formulas 

X& = caXooc, Xoa = cons& a = 1, 2 (3.3) 

where xacx, is the true magnetic susceptibility of component a , hold for multicomp- 
onent mixtures. This formula is a corollary of Langevin’s formula for magnetization 
intensity M, of phase a ) when the density of the multicomponent mixture p is con- 
stant, for instance, when the mixture mean velocity is zero and at the initial instant 
of time the mixture is homogeneous. 

The formula defining the diffusion in a mixture of two magnetizable uncharged 
liquids at the same constant temperature is, with allowance for formulas (3.1) and 
(3.3). of the form _ .~ 

J2=-Jl=L1,1 (3.4) 

If the mixture temperature is constant in space, the first term in formula (3.4) is 
proportional to the concentration gradient and defines the diffusion generated by non- 
uniform concentration. The second term defines the diffusion of components in an in- 
homogeneous magnetic field due to the difference between magnetic susceptibility of 
mixture components. Formula (3.4) differs fxom the formula for dif~sion in the 
magnetizable mixture of two liquids proposed in [7]. The formulas in [7} imply that 
component interdiffusion in an inhomogeneous magnetic field occurs, also, when the 
magnetic susceptibilities xol and xo2 of the two media are the same, while it fol- 
lows from formulas (3.4) that in that case there is not interdifmsion between compon- 
ents in a magnetic field {diffusion induced by concentration gradient is evidently still 
present). 
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